A Perspective on Neutrino Oscillations

José W. F. Valle AHEP Group http://ahepruv.es/

IFIC-Valencia

Atmospheric Neutrinos

produced in cascades initiated by collisions of cosmic rays with the earth's atmosphere

pion & muon decays

deficit of ν_{μ}

that cross the earth (1998)

Atmospheric zenith distribution

Maltoni et al, PRD67 (2003) 013011 rejects "sterility"

Accelerator Neutrinos

well controlled source

checks atm ν_{μ} oscill hypothesis

K2K confirms the atm neutrino oscillation interpretation: both by ν_{μ} deficit and by obs a distortion of the energy spectrum

solar neutrinos

 neutrinos produced in the solar core in thermonuclear reactions

- these result in the overall fusion of protons into helium: $4p \rightarrow {}^{4}\text{He} + 2e^{+} + \gamma + 2\nu_{e}$
- SSM predicts more neutrinos
- than detected in underground experiments

solar neutrino defi cit

neutrinos from reactors

KamLAND has solved the solar

neutrino problem...

rejecting non-standard mechanisms as leading solns

LATEST GLOBAL STATUS OF OSCILLATIONS

M. Maltoni et al, NJP 6 (2004) 122 nu-phys enter precision era Tab

similar analyses by Bahcall et al, Bandyopadhyay et al, Fogli et al, ...

TWO SMALL PARAMETERS

for low $\Delta m^2_{\rm ATM}$ solar+KamLAND contribute to improve upon Chooz

further improvements will come from LBL reactor/accel expts

as well as

D/N solar-nu studies (Akhmedov etal JHEP05 (2004) 057)

closeup

how well do we understand

• • •

the Sun? neutrino propagation ? neutrino interactions ?

the importance of reactors

KamLAND has solved the solar neutrino

problem ?.

rejecting non-standard mechanisms as leading

noisy Sun rob

robust

Burgess et al JCAP0401 (2004) 007

robust Miranda et al PRL93 (2004) 051304 & PRD70 (2004) 113002

NSI almost robust ...

Valle @ NO-VE 2006, Venic

FRAGILITY OF SOLAR-NU?

Miranda etal, hep-ph/0406280

wrt NSI

degenerate dark-side soln, not resolved by KamLAND

resolve NF

ROBUSTNESS OF ATM-NU

atm bounds on FC and NU nu-interactions

upd of Fornengo et al, PRD65 (2002) 013010

non-oscillation physics

р

р

PROBING ABSOLUTE M-NU SCALE

Bilenky, Faessler, Simkovic PRD70 (2004) 033003

can not yet reconstruct majorana phases Barger, Glashow, Langacker, Marfatia, PLB540 (2002) 247

predicting 0-nu double beta decay

A₄ triplet model of nu-masses

Hirsch et al, PRD72 (2005) 091301

$$M_{\nu} = \begin{pmatrix} a+2b & d & d \\ f & a-b & d \\ e & d & a-b \end{pmatrix}$$

gives $\theta_{23} = 45 \tan^2 \theta_{12} = 1/2$
 $|\langle m_{ee} \rangle| \ge 0.17 \sqrt{\Delta m_{ATM}^2}$
also for normal hierarchy

sensitive to Majorana phase

SIGNIFICANCE of 0-nu DOUBLE BETA DECAY

• in a weak interaction gauge theory non-zero $\beta\beta_{0\nu}$ implies at least one neutrino is Majorana

Schechter and JV, PRD25 (1982) 2951

no such theorem for flavor violation

most basic nu-mass definition

Weinberg PRD22 (1980) 1694

most basic nu-mass definition

Weinberg PRD22 (1980) 1694

unknown scale

Valle @ NO-VE 2006, Venice- p.19

Weinberg PRD22 (1980) 1694

Weinberg PRD22 (1980) 1694

The SEESAW PARADIGM

Minkowski 77, GRS-Y 79, Schechter, Valle 80 & 82, Mohapatra, Senjanovic 80, Lazarides, Shafi, Wetterich

nu-masses follow from

- $SU(2) \otimes U(1)$ singlet exchange (type I)
- heavy scalar bosons exchange (type II)

$$\left(\begin{array}{ccc} M_L & D \\ D^T & M_R \end{array}\right)$$

first gives $M_{\nu \text{ eff}} \simeq -DM_R^{-1}D^T$

both suppressed by new scale

simplest seesaw possibly out ...

Q	<u> </u>
	/
	\checkmark
	1
	\frown
1/	1/

thermal leptogenesis

seesaw offers a way to generate cosmic baryon asymmetry from out-of-equilibrium decay of heavy singlet neutrinos Fukugita, Yanagida 86

simplest (type-I) supersymmetric seesaw requires the lightest of the three right-handed neutrinos $\gtrsim 10^9$ GeV Their thermal production requires very high reheating temperatures

 \rightarrow gravitino crisis

-

tiny RPV $\lambda_i \hat{N}_i \hat{H}_u \hat{H}_d$ helps

Farzan & Valle PRL 96 (2006) 011601

SEESAW UNIFICATION AT HIGH SCALE

UNIFIED SEESAW w/ LOW SCALE

$$M_{\nu\nu^{c}S} = \begin{pmatrix} 0 & Yv_{u} & Fv_{L} \\ Y^{T}v_{u} & 0 & \tilde{F}v_{R} \\ F^{T}v_{L} & \tilde{F}^{T}v_{R} & 0 \end{pmatrix}$$
$$M_{\nu-\text{eff}} \simeq \frac{\rho v^{2}}{M_{X}} \left[Y(F\tilde{F}^{-1})^{T} + \text{tr} \right]$$

Malinsky, Romao, JV, PRL95 (2005) 161801

Akhmedov et al PLB368 (1996) 270, PRD53 (1996) 2752 Albright & Barr, Fukuyama, ... 2005

```
SUSY SO(10) with low B-L scale
```


MODEL-INDEPENDENT SEESAW

Schechter, JV, PRD22 (1980) 2227 & D25 (1982) 774

- **scale need not be high** (any # of $SU(2) \otimes U(1)$ singlets)
- doublet-singlet mixing implies effectively

non-unitary lepton mixing matrix K_L

seesaw mixing matrix contains

far more angles θ_{ij} and phases ϕ_{ij} than for quarks

- (i) Majorana phases
- (ii) isodoublet-isosinglet neutrino mixings
- charged and neutral currents may produce sizeable gauge-induced NSI
 - The (3, 1) model as basis for hybrid models of nu-mass

SEESAW and LFV

missing partner or inverse seesaw Mohapatra & Valle 86

 $\left(\begin{array}{cccc}
0 & m_D^T & 0 \\
m_D & 0 & M^T \\
0 & M & \mu
\end{array}\right)$

-2

-4

-6

-8

-10

 $\log_{10}(\mu/\mathrm{M})$

LFV & CPV

(even as $m_{\nu} \rightarrow 0$)

NHL exchange

SUSY loops

Deppisch & JV, PRD72 (2005) 036001 & hep-ph/0512360

SUSY ORIGIN OF NU-MASS

spontaneous RPV

Masiero and JV, PLB251 (1990) 273

 \rightarrow effective bilinear RPV

for a review see M. Hirsch, JV, NJP 6 (2004) 76

0-0

de Campos et al, PRD71 (2005) 075001

TESTING NU-OSCILLATIONS at LHC/ILC LSP decays lead to **D-V** events de Campos et al, PRD71 (2005) 075001 **LSP** decay properties correlate with nu-mixing angles 10 5 $vs \tan^2_{atm}$ 2 1 0.5 0.2 0.1 0.1 0.2 0.5 2 10 5 1 smoking gun test of SUSY origin of nu-mass Porod et al PRD63 (2001) 115004

LHC will provide enough luminosity for detailed correlation studies

TESTING NU-OSCILLATIONS at LHC/ILC LSP decays lead to **D-V** events de Campos et al, PRD71 (2005) 075001 **LSP** decay properties correlate with nu-mixing angles 10 5 vs \tan^2_{atm} 2 1 0.5 0.2 0.1 0.5 0.1 0.2 2 5 10 1 smoking gun test of SUSY origin of nu-mass Porod et al PRD63 (2001) 115004 LHC will provide enough luminosity for detailed **correlation studies _** irrespective of the nature of the LSP **Restrepo et al, PRD64 (2001) 055011** stau Hirsch et al, PRD66 (2002) 095006 other LSPs D68 (2003) 115007

open questions

- what is the absolute scale of neutrino mass?
- are neutrinos Dirac or Majorana?
- is CP violated in the lepton sector? does it produce the cosmic baryon asymmetry?
- what is the origin of neutrino mass? can it be tested at accelerators?
- can neutrinos have non-standard interactions?
- can neutrinos probe the cosmos?
- can neutrinos probe our earth?

CMB and LSS bounds on absolute m-nu scale

Pastor et al PRD69 (2004) 123007

latest fit of oscillation parameters

M. Maltoni et al GlobalView

parameter	best fit	2σ	3σ	4σ
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.9	7.3–8.5	7.1–8.9	6.8–9.3
$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	2.2	1.7 - 2.9	1.4–3.3	1.1–3.7
$\sin^2 heta_{12}$	0.30	0.25 - 0.34	0.23-0.38	0.21–0.41
$\sin^2 heta_{23}$	0.50	0.38-0.64	0.34-0.68	0.30-0.72
$\sin^2 heta_{13}$	0.00	≤ 0.031	≤ 0.051	≤ 0.073

Table I: Best-fit values, 2σ and 3σ intervals (1 d.o.f.) for the three-flavour neutrino oscillation parameters from global data including solar, atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K) experiments.

what constrains θ_{13}

M. Maltoni et al, NJP 6 (2004) 122 = hep-ph 0405172 t13

weak interactions at low energies

two tasks for Borexino?

• probe nu-magn moment

upd of Grimus et al, NPB648, 376 (2003)

• probe NSI

Miranda et al hep-ph/0406280

why KamLAND04 improves θ_{13}

strong spectrum distortion

favors unphysical θ_{13} values

combination with solar further improves ...

Neutrino Factories

double price for probing CPV

 $s_{13}~\&~rac{\Delta m^2_{_{
m SOL}}}{\Delta m^2_{_{
m ATM}}}$

Non-Standard nu-Intercations (NSI) must be rejected ...

Huber, Schwetz & JV PRL88 (2002) 101804 & PRD66, 013006 (2002)

Improved FC-NSI-tests at NuFact •

10 kt detector, 0.33 ν_{τ} detection efficiency above 4 GeV; no tau charge id needed

Robustness of solar-nu oscillations wrt noise-KL04

neutrino propagation strongly affected by solar density noise Balantekin et al 95 Nunokawa et al NPB472 (1996) 495 Burgess et al 97 Burgess et al, Ap.J.588:L65 (2003) & JCAP 0401 (2004) 007 Guzzo et al, Balantekin et al

despite such large distortion

determination is robust

Maltoni et al, hep-ph 0405172

Robustness of solar-nu oscillations against SFP

regular versus random mag field

isolating μ_{ν} from $\mu_{\nu}B$?

Miranda et al PRL93 (2004) 051304

& PRD70 (2004) 113002

non-standard interactions

FC or NU sub-weak strength dim-6 terms εG_F

can induce non-standard interactions

oscillations of massless neutrinos in matter, which are E-independent, converting both neutrinos & anti-nu's, can be resonant in SNovae Valle PLB199 (1987) 432, Roulet 91; Guzzo et al 91; Barger et al 91

they give excellent description of solar data Guzzo et al NPB629 (2002) 479

but can not be the leading mechanism, due to KamLAND

how much can they affect solar neutrino oscill parameters?

day-night effect with 3 neutrinos

Akhmedov, Tortola, JV, JHEP05 (2004) 057

